Bayesian Approach for Reconstruction of Moving Brain Dipoles
نویسندگان
چکیده
EEG source reconstruction is a challenging task and several methods have been applied to this ill-posed inverse problem. Most of the reconstruction techniques rely on imaging models, where the neural activity is described by a dense set of current dipoles. On the other hand, the point source models, which employ a small number of equivalent current dipoles, has received less attention. While both approaches (imaging versus current dipoles) have their own issues, the main advantage of the dipole models is that they approximate summaries of evoked responses or helpful first approximations. In this paper, we use a recursive Bayesian estimation technique, known as Particle Filter (PF), to simultaneously reconstruct the spatial locations within the head and the corresponding waveforms of the most active dipoles that originated the EEG sensor data. Normally, in EEG source reconstruction, fixed dipole locations are assumed. The proposed PF framework presents a shift in the current paradigm by estimating moving EEG sources, which may vary from one location to another in the brain reflecting the underlying brain activity. Our computer simulations, based on generated and real EEG data, show that the proposed PF approach estimates the dynamic EEG sources with high fidelity.
منابع مشابه
Variational Bayesian inversion of the equivalent current dipole model in EEG/MEG
In magneto- and electroencephalography (M/EEG), spatial modelling of sensor data is necessary to make inferences about underlying brain activity. Most source reconstruction techniques belong to one of two approaches: point source models, which explain the data with a small number of equivalent current dipoles and distributed source or imaging models, which use thousands of dipoles. Much methodo...
متن کاملRobust Bayesian estimation of the location, orientation, and time course of multiple correlated neural sources using MEG
The synchronous brain activity measured via MEG (or EEG) can be interpreted as arising from a collection (possibly large) of current dipoles or sources located throughout the cortex. Estimating the number, location, and time course of these sources remains a challenging task, one that is significantly compounded by the effects of source correlations and unknown orientations and by the presence ...
متن کاملEstimation of hyper-parameters for a hierarchical model of combined cortical and extra-brain current sources in the MEG inverse problem
One of the major obstacles in estimating cortical currents from MEG signals is the disturbance caused by magnetic artifacts derived from extra-cortical current sources such as heartbeats and eye movements. To remove the effect of such extra-brain sources, we improved the hybrid hierarchical variational Bayesian method (hyVBED) proposed by Fujiwara et al. (NeuroImage, 2009). hyVBED simultaneousl...
متن کاملUnmanned aerial vehicle field sampling and antenna pattern reconstruction using Bayesian compressed sensing
Antenna 3D pattern measurement can be a tedious and time consuming task even for antennas with manageable sizes inside anechoic chambers. Performing onsite measurements by scanning the whole 4π [sr] solid angle around the antenna under test (AUT) is more complicated. In this paper, with the aim of minimum duration of flight, a test scenario using unmanned aerial vehicles (UAV) is proposed. A pr...
متن کاملFunctional Brain Response to Emotional Muical Stimuli in Depression, Using INLA Approach for Approximate Bayesian Inference
Introduction: One of the vital skills which has an impact on emotional health and well-being is the regulation of emotions. In recent years, the neural basis of this process has been considered widely. One of the powerful tools for eliciting and regulating emotion is music. The Anterior Cingulate Cortex (ACC) is part of the emotional neural circuitry involved in Major Depressive Disorder (MDD)....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013